login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302994
Number of bi-unitary abundant numbers < 10^n.
5
0, 14, 147, 1553, 15450, 155395, 1549818, 15498814, 155079196, 1550331185, 15503061466, 155037242668, 1550370696100, 15503650949671, 155036854371220, 1550366484701654, 15503648102080675
OFFSET
1,2
FORMULA
Conjecture: Lim_{n->oo} a(n)/10^n = 0.15... is the density of bi-unitary abundant numbers.
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; babQ[n_] := bsigma[n] > 2 n; c = 0; k = 1; seq={}; Do[While[k < 10^n, If[babQ[k], c++]; k++]; AppendTo[seq, c], {n, 1, 5}]; seq
PROG
(PARI) biusigma(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
a(n) = sum(k=1, 10^n-1, biusigma(k) > 2*k); \\ Michel Marcus, Apr 17 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 17 2018
EXTENSIONS
a(8)-a(17) from Hiroaki Yamanouchi, Aug 24 2018
STATUS
approved