OFFSET
1,2
FORMULA
Conjecture: Lim_{n->oo} a(n)/10^n = 0.15... is the density of bi-unitary abundant numbers.
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; babQ[n_] := bsigma[n] > 2 n; c = 0; k = 1; seq={}; Do[While[k < 10^n, If[babQ[k], c++]; k++]; AppendTo[seq, c], {n, 1, 5}]; seq
PROG
(PARI) biusigma(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
a(n) = sum(k=1, 10^n-1, biusigma(k) > 2*k); \\ Michel Marcus, Apr 17 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 17 2018
EXTENSIONS
a(8)-a(17) from Hiroaki Yamanouchi, Aug 24 2018
STATUS
approved