login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302996
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function.
9
1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 4, 2, 0, 1, 8, 6, 4, 2, 0, 1, 10, 24, 30, 4, 2, 0, 1, 12, 90, 104, 6, 12, 2, 0, 1, 14, 252, 250, 24, 30, 4, 2, 0, 1, 16, 574, 876, 730, 248, 30, 4, 2, 0, 1, 18, 1136, 3542, 4092, 1210, 312, 54, 4, 2, 0, 1, 20, 2034, 12112, 18494, 7812, 2250, 456, 6, 4, 2, 0
OFFSET
0,5
COMMENTS
A(n,k) is the number of ordered ways of writing n^2 as a sum of k squares.
FORMULA
A(n,k) = [x^(n^2)] (Sum_{j=-infinity..infinity} x^(j^2))^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
0, 2, 4, 6, 24, 90, ...
0, 2, 4, 30, 104, 250, ...
0, 2, 4, 6, 24, 730, ...
0, 2, 12, 30, 248, 1210, ...
MAPLE
b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,
b(n, t-1)+2*add(b(n-j^2, t-1), j=1..isqrt(n))))
end:
A:= (n, k)-> b(n^2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 10 2023
MATHEMATICA
Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..4,7 give A000007, A040000, A046109, A016725, A267326, A361695.
Main diagonal gives A232173.
Sequence in context: A246862 A338773 A194686 * A266213 A289522 A361397
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Apr 17 2018
STATUS
approved