login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function.
9

%I #12 Mar 27 2023 17:48:36

%S 1,1,0,1,2,0,1,4,2,0,1,6,4,2,0,1,8,6,4,2,0,1,10,24,30,4,2,0,1,12,90,

%T 104,6,12,2,0,1,14,252,250,24,30,4,2,0,1,16,574,876,730,248,30,4,2,0,

%U 1,18,1136,3542,4092,1210,312,54,4,2,0,1,20,2034,12112,18494,7812,2250,456,6,4,2,0

%N Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function.

%C A(n,k) is the number of ordered ways of writing n^2 as a sum of k squares.

%H Alois P. Heinz, <a href="/A302996/b302996.txt">Antidiagonals n = 0..200, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>

%F A(n,k) = [x^(n^2)] (Sum_{j=-infinity..infinity} x^(j^2))^k.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 0, 2, 4, 6, 8, 10, ...

%e 0, 2, 4, 6, 24, 90, ...

%e 0, 2, 4, 30, 104, 250, ...

%e 0, 2, 4, 6, 24, 730, ...

%e 0, 2, 12, 30, 248, 1210, ...

%p b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,

%p b(n, t-1)+2*add(b(n-j^2, t-1), j=1..isqrt(n))))

%p end:

%p A:= (n, k)-> b(n^2, k):

%p seq(seq(A(n,d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Mar 10 2023

%t Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

%t Table[Function[k, SeriesCoefficient[Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

%Y Columns k=0..4,7 give A000007, A040000, A046109, A016725, A267326, A361695.

%Y Main diagonal gives A232173.

%Y Cf. A000122, A122141, A255212, A286815.

%K nonn,tabl

%O 0,5

%A _Ilya Gutkovskiy_, Apr 17 2018