login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232173
Number of ways of writing n^2 as a sum of n squares.
14
1, 2, 4, 30, 24, 1210, 18396, 235998, 4793456, 76168850, 1282320348, 25100418046, 481341997032, 10452086347274, 237925595533164, 5524220670435982, 136705837928870368, 3444192369181374754, 89772662325079950436, 2431910317560215089758, 67517711482300160612104
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200 (first 101 terms from Paul D. Hanna)
FORMULA
a(n) equals the coefficient of x^(n^2) in the n-th power of Jacobi theta_3(x) where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
EXAMPLE
There are a(4) = 24 solutions (w,x,y,z) of 4^2 = w^2 + x^2 + y^2 + z^2:
(2,2,2,2), (-2,-2,-2,-2), 6 permutations of (2,2,-2,-2),
4 permutations of (2,2,2,-2), 4 permutations of (2,-2,-2,-2),
4 permutations of (4,0,0,0), and 4 permutations of (-4,0,0,0).
To illustrate a(n) = the coefficient of x^(n^2) in theta_3(x)^n, where
theta_3(x) = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + 2*x^36 + 2*x^49 +...,
form a table of coefficients of x^k in theta_3(x)^n, n>=0, like so:
n\k:0..1...2...3...4...5...6...7...8...9..10..11..12..13..14..15..16....
0:[(1),0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...];
1: [1,(2), 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2,...];
2: [1, 4, 4, 0, (4), 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4,...];
3: [1, 6, 12, 8, 6, 24, 24, 0, 12,(30),24, 24, 8, 24, 48, 0, 6,...];
4: [1, 8, 24, 32, 24, 48, 96, 64, 24,104,144, 96, 96,112,192,192,(24),...];
5: [1,10, 40, 80, 90,112,240,320,200,250,560,560,400,560,800,960,730,...];
then the coefficients in parenthesis form the initial terms of this sequence.
MAPLE
b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,
b(n, t-1) +2*add(b(n-j^2, t-1), j=1..isqrt(n))))
end:
a:= n-> b(n^2, n):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 10 2023
MATHEMATICA
b[n_, t_] := b[n, t] = If[n == 0, 1, If[n < 0 || t < 1, 0, b[n, t - 1] + 2*Sum[b[n - j^2, t - 1], {j, 1, Floor@Sqrt[n]}]]];
a[n_] := b[n^2, n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 28 2023, after Alois P. Heinz *)
PROG
(PARI) {a(n)=local(THETA3=1+2*sum(m=1, n+1, x^(m^2))+x*O(x^(n^2))); polcoeff(THETA3^n, n^2)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A066535.
Main diagonal of A302996.
Sequence in context: A241589 A289776 A290169 * A067195 A080230 A084914
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 19 2013
STATUS
approved