login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267326
Number of ways writing n^2 as a sum of four squares: a(n) = A000118(n^2).
4
1, 8, 24, 104, 24, 248, 312, 456, 24, 968, 744, 1064, 312, 1464, 1368, 3224, 24, 2456, 2904, 3048, 744, 5928, 3192, 4424, 312, 6248, 4392, 8744, 1368, 6968, 9672, 7944, 24, 13832, 7368, 14136, 2904, 11256, 9144, 19032, 744, 13784, 17784, 15144, 3192
OFFSET
0,2
COMMENTS
For all pair of relatively prime numbers k, m this sequence is multiplicative with a factor of 8: a(k*m) = 8*a(k)*a(m). - Christopher Heiling, Apr 02 2017
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..150 from Christopher Heiling)
FORMULA
a(n) = A264390(n) - A264390(n-1) for n > 1 and a(1) = A264390(1) = 2*D.
a(n) = 8*sigma(n^2) if n is odd else 24*sigma(m(n^2)), where sigma(n) = A000203(n) and m(n) = A000265(n) is the largest odd divisor of n. - Peter Bala, Jan 15 2016
a(p^(k+1)) = 8*(p^2 *a(p^k)+p+1) for p prime. In particular a(p) = 8*(p^2+p+1). - Christopher Heiling, Apr 02 2017
EXAMPLE
For n = 2 the a(n) = 24 solutions of x^2 + y^2 + z^2 + t^2 = 2^2 are:
{x,y,z,t} = {{0,0,0,2};{0,0,0,-2};{0,0,2,0};{0,0,-2,0};{0,2,0,0};{0,-2,0,0};{2,0,0,0};{-2,0,0,0};{1,1,1,1};{1,1,1,-1};{1,1,-1,1};{1,-1,1,1};{-1,1,1,1};{1,1,-1,-1};{1,-1,1,-1};{-1,1,1,-1};{1,-1,-1,1};{-1,1,-1,1};{1,-1,-1,-1};{-1,1,-1,-1};{-1,-1,1,-1};{-1,-1,1,-1};{-1,-1,-1,1};{-1,-1,-1,-1}}.
MAPLE
terms := 42:
(add(q^(m^2), m = -terms..terms))^4:
seq(coeff(%, q, n^2), n = 0..terms); # Peter Bala, Jan 15 2016
MATHEMATICA
a[n_] := SquaresR[4, n^2];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 18 2023 *)
CROSSREFS
Cf. A000118.
Partial sums of this sequence give A264390.
Column k=4 of A302996.
Sequence in context: A019221 A334756 A281463 * A063515 A220706 A246030
KEYWORD
nonn,easy
AUTHOR
Christopher Heiling, Jan 13 2016
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 10 2023
STATUS
approved