Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #66 May 18 2023 08:33:04
%S 1,8,24,104,24,248,312,456,24,968,744,1064,312,1464,1368,3224,24,2456,
%T 2904,3048,744,5928,3192,4424,312,6248,4392,8744,1368,6968,9672,7944,
%U 24,13832,7368,14136,2904,11256,9144,19032,744,13784,17784,15144,3192
%N Number of ways writing n^2 as a sum of four squares: a(n) = A000118(n^2).
%C For all pair of relatively prime numbers k, m this sequence is multiplicative with a factor of 8: a(k*m) = 8*a(k)*a(m). - _Christopher Heiling_, Apr 02 2017
%H Alois P. Heinz, <a href="/A267326/b267326.txt">Table of n, a(n) for n = 0..10000</a> (terms n = 1..150 from Christopher Heiling)
%F a(n) = A264390(n) - A264390(n-1) for n > 1 and a(1) = A264390(1) = 2*D.
%F a(n) = 8*sigma(n^2) if n is odd else 24*sigma(m(n^2)), where sigma(n) = A000203(n) and m(n) = A000265(n) is the largest odd divisor of n. - _Peter Bala_, Jan 15 2016
%F a(p^(k+1)) = 8*(p^2 *a(p^k)+p+1) for p prime. In particular a(p) = 8*(p^2+p+1). - _Christopher Heiling_, Apr 02 2017
%e For n = 2 the a(n) = 24 solutions of x^2 + y^2 + z^2 + t^2 = 2^2 are:
%e {x,y,z,t} = {{0,0,0,2};{0,0,0,-2};{0,0,2,0};{0,0,-2,0};{0,2,0,0};{0,-2,0,0};{2,0,0,0};{-2,0,0,0};{1,1,1,1};{1,1,1,-1};{1,1,-1,1};{1,-1,1,1};{-1,1,1,1};{1,1,-1,-1};{1,-1,1,-1};{-1,1,1,-1};{1,-1,-1,1};{-1,1,-1,1};{1,-1,-1,-1};{-1,1,-1,-1};{-1,-1,1,-1};{-1,-1,1,-1};{-1,-1,-1,1};{-1,-1,-1,-1}}.
%p terms := 42:
%p (add(q^(m^2), m = -terms..terms))^4:
%p seq(coeff(%, q, n^2), n = 0..terms); # _Peter Bala_, Jan 15 2016
%t a[n_] := SquaresR[4, n^2];
%t Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, May 18 2023 *)
%Y Cf. A000118.
%Y Partial sums of this sequence give A264390.
%Y Column k=4 of A302996.
%K nonn,easy
%O 0,2
%A _Christopher Heiling_, Jan 13 2016
%E a(0)=1 prepended by _Alois P. Heinz_, Mar 10 2023