OFFSET
0,24
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, ...
0, 1, 1, 1, 2, 3, 3, 4, 5, 5, 6, ...
0, 1, 2, 2, 3, 4, 5, 7, 8, 9, 11, ...
0, 1, 1, 2, 4, 5, 9, 10, 11, 15, 17, ...
0, 1, 1, 2, 4, 6, 9, 13, 18, 21, 27, ...
0, 1, 1, 1, 2, 7, 9, 16, 25, 30, 41, ...
0, 1, 1, 4, 6, 8, 18, 27, 36, 52, 68, ...
0, 1, 2, 2, 7, 13, 23, 36, 51, 70, 94, ...
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0 or i=1 and n<=t, 1,
(j-> `if`(t*j<n, 0, b(n, i-1, t)+
`if`(j>n, 0, b(n-j, i, t-1))))(i^2))
end:
A:= (n, k)-> b(n^2, n, k):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1 && n <= t, 1, Function[j, If[t*j<n, 0, b[n, i-1, t] + If[j>n, 0, b[n-j, i, t-1]]]][i^2]]; A[n_, k_] := b[n^2, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 17 2015
STATUS
approved