|
|
A099918
|
|
A Chebyshev transform related to the 7th cyclotomic polynomial.
|
|
1
|
|
|
1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The g.f. is a Chebyshev transform of 1/(1+x-2x^2-x^3) under the Chebyshev mapping g(x)->(1/(1+x^2))g(x/(1+x^2)). The denominator is the 7th cyclotomic polynomial. The inverse of the 7 cyclotomic polynomial A014016 is given by sum{k=0..n, A099918(n-k)(k/2+1)(-1)^(k/2)(1+(-1)^k)/2}.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1+x^2)^2/(1+x+x^2+x^3+x^4+x^5+x^6); a(n)=sum{k=0..floor(n/2), C(n-k, k)^(-1)^k*b(n-2k)}, where b(n)=A094790(n/2+1)(1+(-1)^n)/2+A094789((n+1)/2)(1-(-1)^n)/2=(-1)^n*A006053(n+2).
a(n)=(1/7)*{-(n mod 7)-[(n+1) mod 7]+2*[(n+2) mod 7]-3*[(n+3) mod 7]+4*[(n+4) mod 7]-3*[(n+5) mod 7]+2*[(n+6) mod 7]}, Paolo P. Lava, Mar 10 2011
|
|
MATHEMATICA
|
LinearRecurrence[{-1, -1, -1, -1, -1, -1}, {1, -1, 2, -2, 1, -1}, 90] (* Harvey P. Dale, May 25 2019 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|