login
A099860
A Chebyshev transform related to the knot 7_1.
2
1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2
OFFSET
0,3
COMMENTS
The g.f. is the transform of the g.f. of A006053(n+1) under the Chebyshev mapping G(x)-> (1/(1+x^2))G(x/(1+x^2)). The denominator of the g.f. is a parameterization of the Alexander polynomial of 7_1. It is also the 14th cyclotomic polynomial.
FORMULA
G.f.: (1+x^2)^2/(1-x+x^2-x^3+x^4-x^5+x^6); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*A006053(n-2k+1)}.
MATHEMATICA
LinearRecurrence[{1, -1, 1, -1, 1, -1}, {1, 1, 2, 2, 1, 1}, 100] (* Harvey P. Dale, May 21 2019 *)
CROSSREFS
Cf. A099859.
Sequence in context: A285194 A039978 A099918 * A317950 A255212 A323011
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 28 2004
STATUS
approved