login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099860
A Chebyshev transform related to the knot 7_1.
2
1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2
OFFSET
0,3
COMMENTS
The g.f. is the transform of the g.f. of A006053(n+1) under the Chebyshev mapping G(x)-> (1/(1+x^2))G(x/(1+x^2)). The denominator of the g.f. is a parameterization of the Alexander polynomial of 7_1. It is also the 14th cyclotomic polynomial.
FORMULA
G.f.: (1+x^2)^2/(1-x+x^2-x^3+x^4-x^5+x^6); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*A006053(n-2k+1)}.
MATHEMATICA
LinearRecurrence[{1, -1, 1, -1, 1, -1}, {1, 1, 2, 2, 1, 1}, 100] (* Harvey P. Dale, May 21 2019 *)
CROSSREFS
Cf. A099859.
Sequence in context: A285194 A039978 A099918 * A317950 A255212 A323011
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 28 2004
STATUS
approved