login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099858
A Chebyshev transform of (1+3x)/(1-3x).
3
1, 6, 17, 42, 109, 288, 755, 1974, 5167, 13530, 35423, 92736, 242785, 635622, 1664081, 4356618, 11405773, 29860704, 78176339, 204668310, 535828591, 1402817466, 3672623807, 9615053952, 25172538049, 65902560198, 172535142545
OFFSET
0,2
COMMENTS
The g.f. is related to the g.f. of A099856 by the Chebyshev mapping G(x)-> (1/(1+x^2))G(x/(1+x^2)).
FORMULA
G.f.: (1+3x+x^2)/((1+x^2)(1-3x+x^2)); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*(6*3^(n-2k-1)-0^(n-2k)}; a(n)=sum{k=0..n, (0^k+6*Fib(2k))cos(pi*(n-k)/2)}; a(n)=sum{k=0..n, A099857(k)*cos(pi*(n-k)/2)}; a(n)=3a(n-1)-2a(n-2)+3a(n-3)-a(n-4).
(1/2) [4Fib(2n+2) - I^n - (-I)^n ]. - Ralf Stephan, Dec 04 2004
MATHEMATICA
LinearRecurrence[{3, -2, 3, -1}, {1, 6, 17, 42}, 40] (* Harvey P. Dale, Apr 17 2024 *)
CROSSREFS
Sequence in context: A343518 A365409 A171507 * A232567 A062020 A066183
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 28 2004
STATUS
approved