login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343518
a(n) = Sum_{1 <= x_1 <= x_2 <= x_3 <= x_4 <= n} gcd(x_1, x_2, x_3 , x_4, n).
2
1, 6, 17, 42, 74, 153, 216, 379, 531, 809, 1011, 1605, 1832, 2626, 3268, 4304, 4861, 6798, 7333, 9878, 11148, 13711, 14972, 19985, 20775, 25643, 28503, 34517, 35988, 46162, 46406, 57092, 61077, 70986, 75099, 92520, 91426, 108693, 115774, 135491, 135791, 165719, 163227, 193437
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} phi(n/d) * binomial(d+3, 4).
G.f.: Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^5.
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / (10800*zeta(5)). - Vaclav Kotesovec, May 23 2021
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[n/#] * Binomial[# + 3, 4] &]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
PROG
(PARI) a(n) = sum(a=1, n, sum(b=1, a, sum(c=1, b, sum(d=1, c, gcd(gcd(gcd(gcd(n, a), b), c), d)))));
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*binomial(d+3, 4));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-x^k)^5))
CROSSREFS
Column 4 of A343516.
Sequence in context: A013319 A047861 A370589 * A365409 A171507 A099858
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 17 2021
STATUS
approved