login
A365409
a(n) = Sum_{k=1..n} binomial(floor(n/k)+3,4).
5
1, 6, 17, 42, 78, 149, 234, 379, 555, 815, 1102, 1557, 2013, 2662, 3388, 4349, 5319, 6695, 8026, 9846, 11712, 14027, 16328, 19503, 22464, 26200, 30030, 34759, 39255, 45221, 50678, 57623, 64465, 72579, 80469, 90665, 99805, 111020, 122146, 135566, 147908, 163638
OFFSET
1,2
FORMULA
a(n) = Sum_{k=1..n} binomial(k+2,3) * floor(n/k).
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^4 = 1/(1-x) * Sum_{k>=1} binomial(k+2,3) * x^k/(1-x^k).
a(n) = (A064603(n)+3*A064602(n)+2*A024916(n))/6. - Chai Wah Wu, Oct 26 2023
PROG
(PARI) a(n) = sum(k=1, n, binomial(n\k+3, 4));
(Python)
from math import isqrt, comb
def A365409(n): return -(s:=isqrt(n))**2*comb(s+3, 3)+sum((q:=n//k)*((comb(k+2, 3)<<2)+comb(q+3, 3)) for k in range(1, s+1))>>2 # Chai Wah Wu, Oct 26 2023
CROSSREFS
Partial sums of A059358.
Sequence in context: A047861 A370589 A343518 * A171507 A099858 A232567
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Oct 23 2023
STATUS
approved