The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064602 Partial sums of A001157: Sum_{j=1..n} sigma_2(j). 26
 1, 6, 16, 37, 63, 113, 163, 248, 339, 469, 591, 801, 971, 1221, 1481, 1822, 2112, 2567, 2929, 3475, 3975, 4585, 5115, 5965, 6616, 7466, 8286, 9336, 10178, 11478, 12440, 13805, 15025, 16475, 17775, 19686, 21056, 22866, 24566, 26776, 28458, 30958 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The subsequence of primes begins: 37, 113, 163, 971, 1481, 112249, 122839, 140729, 145771, 232187, 347731. - Jonathan Vos Post, Feb 11 2010 In general, for m >= 0 and j >= 0, Sum_{k=1..n} k^m * sigma_j(k) = Sum_{k=1..s} (k^m * F_{m+j}(floor(n/k)) + k^(m+j) * F_m(floor(n/k))) - F_{m+j}(s) * F_m(s), where s = floor(sqrt(n)) and F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1). - Daniel Suteu, Nov 27 2020 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe) Project Euler, Sum of squares of divisors, 2012. FORMULA a(n) = a(n-1) + A001157(n) = Sum_{j=1..n} sigma_2(j) where sigma_2(j) = A001157(j). a(n) = Sum_{i=1..n} i^2 * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012 G.f.: (1/(1 - x))*Sum_{k>=1} k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 02 2017 a(n) ~ zeta(3) * n^3 / 3. - Vaclav Kotesovec, Sep 02 2018 a(n) = Sum_{k=1..s} (A000330(floor(n/k)) + k^2*floor(n/k)) - s*A000330(s), where s = floor(sqrt(n)). - Daniel Suteu, Nov 26 2020 MATHEMATICA Accumulate@ Array[DivisorSigma[2, #] &, 42] (* Michael De Vlieger, Jan 02 2017 *) PROG (PARI) a(n) = sum(j=1, n, sigma(j, 2)); \\ Michel Marcus, Dec 15 2013 (PARI) f(n) = n*(n+1)*(2*n+1)/6; \\ A000330 a(n) = my(s=sqrtint(n)); sum(k=1, s, f(n\k) + k^2*(n\k)) - s*f(s); \\ Daniel Suteu, Nov 26 2020 (Python) from math import isqrt def f(n): return n*(n+1)*(2*n+1)//6 def a(n): s = isqrt(n) return sum(f(n//k) + k*k*(n//k) for k in range(1, s+1)) - s*f(s) print([a(k) for k in range(1, 43)]) # Michael S. Branicky, Oct 01 2022 after Daniel Suteu CROSSREFS Cf. A001157, A064605. Cf. A064603, A064604, A248076. Sequence in context: A048487 A124699 A237601 * A346375 A068941 A058272 Adjacent sequences: A064599 A064600 A064601 * A064603 A064604 A064605 KEYWORD nonn AUTHOR Labos Elemer, Sep 24 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 07:15 EST 2022. Contains 358512 sequences. (Running on oeis4.)