|
|
A064602
|
|
Partial sums of A001157: Sum_{j=1..n} sigma_2(j).
|
|
33
|
|
|
1, 6, 16, 37, 63, 113, 163, 248, 339, 469, 591, 801, 971, 1221, 1481, 1822, 2112, 2567, 2929, 3475, 3975, 4585, 5115, 5965, 6616, 7466, 8286, 9336, 10178, 11478, 12440, 13805, 15025, 16475, 17775, 19686, 21056, 22866, 24566, 26776, 28458, 30958
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
In general, for m >= 0 and j >= 0, Sum_{k=1..n} k^m * sigma_j(k) = Sum_{k=1..s} (k^m * F_{m+j}(floor(n/k)) + k^(m+j) * F_m(floor(n/k))) - F_{m+j}(s) * F_m(s), where s = floor(sqrt(n)) and F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1). - Daniel Suteu, Nov 27 2020
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1) + A001157(n) = Sum_{j=1..n} sigma_2(j) where sigma_2(j) = A001157(j).
G.f.: (1/(1 - x))*Sum_{k>=1} k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 02 2017
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) a(n) = sum(j=1, n, sigma(j, 2)); \\ Michel Marcus, Dec 15 2013
(PARI) f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
a(n) = my(s=sqrtint(n)); sum(k=1, s, f(n\k) + k^2*(n\k)) - s*f(s); \\ Daniel Suteu, Nov 26 2020
(Python)
from math import isqrt
def f(n): return n*(n+1)*(2*n+1)//6
def a(n):
s = isqrt(n)
return sum(f(n//k) + k*k*(n//k) for k in range(1, s+1)) - s*f(s)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|