OFFSET
1,2
COMMENTS
In general, Sum_{k=1..n} sigma_j(k) = Sum_{k=1..n} (Bernoulli(j+1, floor(1 + n/k)) - Bernoulli(j+1, 0))/(j+1), where Bernoulli(n,x) are the Bernoulli polynomials, for any positive integer j. - Daniel Suteu, Nov 07 2018
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: (1/(1 - x))*Sum_{k>=1} k^4*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 23 2017
a(n) ~ zeta(5) * n^5 / 5. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} Bernoulli(5, floor(1 + n/k))/5, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^4 * floor(n/k). - Daniel Suteu, Nov 08 2018
MAPLE
ListTools:-PartialSums(map(numtheory:-sigma[4], [$1..100])); # Robert Israel, Jun 29 2018
MATHEMATICA
Accumulate[DivisorSigma[4, Range[50]]] (* Vaclav Kotesovec, Mar 30 2018 *)
PROG
(PARI) vector(50, n, sum(j=1, n, sigma(j, 4))) \\ G. C. Greubel, Nov 07 2018
(Magma) [(&+[DivisorSigma(4, j): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Nov 07 2018
(Python)
from math import isqrt
def A064604(n): return (-(s:=isqrt(n))**2*(s**2*(s*(6*s+15)+10)-1) + sum((q:=n//k)*(30*k**4+q**2*(q*(6*q+15)+10)-1) for k in range(1, s+1)))//30 # Chai Wah Wu, Oct 21 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 24 2001
STATUS
approved