OFFSET
0,2
COMMENTS
[Empirical] a(base,n)=a(base-1,n)+A002426(n+1) for base>=1.int(n/2)+1
a(n) = T(n, 6) where T(n, k) = Sum_{j=1..k} (1+2*cos(j*Pi/(k+1)))^n. These are the number of smooth cyclic words of length n over the alphabet {1,2,..,6}. See theorem 3.3 in Knopfmacher and others, reference in A124696. - Peter Luschny, Aug 13 2012
FORMULA
Conjectures from Colin Barker, Jun 04 2017: (Start)
G.f.: (1 - 10*x^2 + 27*x^4 - 8*x^5 - 5*x^6) / ((1 - 2*x - x^2 + x^3)*(1 - 4*x + 3*x^2 + x^3)).
a(n) = 6*a(n-1) - 10*a(n-2) + 9*a(n-4) - 2*a(n-5) - a(n-6) for n>6.
(End)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-1](($[i]`-$[(i+1)mod N]`>1)+($[(i+1)mod N]`-$[i]`>1))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
R. H. Hardin, Dec 28 2006
STATUS
approved