|
|
A048487
|
|
a(n) = T(4,n), array T given by A048483.
|
|
14
|
|
|
1, 6, 16, 36, 76, 156, 316, 636, 1276, 2556, 5116, 10236, 20476, 40956, 81916, 163836, 327676, 655356, 1310716, 2621436, 5242876, 10485756, 20971516, 41943036, 83886076, 167772156, 335544316, 671088636, 1342177276, 2684354556
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) = sum of (n+1)-th row terms of triangle A134636. This sequence is the binomial transform of 1, 5, 5, (5 continued). - Gary W. Adamson, Nov 04 2007
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*a(n-1) + 4 for n > 0 with a(0) = 1. - Paul Barry, Aug 25 2004
a(n) = 3*a(n-1) - 2*a(n-2) for n >= 2.
G.f.: (1 + 3*x)/((1 - x)*(1 - 2*x)). (End)
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
Cf. A010716 (n-th difference of a(n), a(n-1), ..., a(0)).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|