login
A048484
a(n) = abs(floor(n/2) - A048299(n)).
3
0, 0, 0, 0, 0, 2, 1, 0, 1, 1, 1, 0, 0, 2, 3, 0, 0, 3, 3, 2, 2, 3, 3, 2, 7, 7, 1, 4, 4, 6, 5, 4, 4, 1, 2, 2, 2, 1, 1, 0, 0, 3, 3, 2, 6, 10, 7, 5, 4, 10, 5, 9, 8, 6, 3, 8, 7, 8, 8, 2, 1, 10, 10, 0, 0, 5, 4, 2, 2, 3, 7, 8, 7, 5, 5, 6, 3, 7, 7, 8, 4, 5, 6, 6, 11, 11, 10, 10, 4, 9, 8, 8, 7, 7, 6, 6, 5, 7, 13, 15
OFFSET
1,6
EXAMPLE
If n = 100 then the number of distinct primes at central C(100, 50) coefficient is 15, while the maximal is 18 which appears first at k = 35. Thus a(100) = 50 - 35 = 15.
MATHEMATICA
Table[Abs@ Floor[n/2] - Min@ MaximalBy[Range[0, n], PrimeNu@ Binomial[n, #] &], {n, 100}] (* Michael De Vlieger, Aug 01 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved