login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178536 First column of A178535. 5
1, -2, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 0, 1, -1, 0, 1, 1, 1, 0, -1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Except for the second term, a(n) seems to be equal to the Mobius function mu(n) = A008683(n) (verified for the first 53 terms).

a(n) = A008683(n) has now been verified for 3 <= n <= 800. - R. J. Mathar, Sep 14 2017

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..800 (prepared from the b-file of A008683 based on R. J. Mathar's Sep 14 2017 comment)

FORMULA

a(n) = A178535(n,1).

MAPLE

A178536 := proc(n) A178535(n, 1) ; end proc;

seq(A178536(n), n=1..80) ; # R. J. Mathar, Oct 28 2010

MATHEMATICA

Clear[t, n, k, nn, a, A]; nn=92; a = Fibonacci[Range[nn] + 1]; t[n_, 1] = If[n >= 1, a[[n]], 0]; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; MatrixForm[A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]; Inverse[A][[All, 1]] (* Mats Granvik, Sep 15 2017 *)

CROSSREFS

Cf. A178535, A008683.

Cf. also A181434, A181435.

Sequence in context: A296139 A321763 A280126 * A286656 A048484 A298601

Adjacent sequences:  A178533 A178534 A178535 * A178537 A178538 A178539

KEYWORD

sign

AUTHOR

Mats Granvik, May 29 2010

EXTENSIONS

More terms from R. J. Mathar, Oct 28 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 05:43 EDT 2019. Contains 325168 sequences. (Running on oeis4.)