login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181434
First column in matrix inverse of a mixed convolution of A052542.
4
1, -3, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1
OFFSET
1,2
COMMENTS
It appears that except for the second term, the sequence is identical to the Möbius function.
Explicit numeric calculation confirms this up to at least n=1085. - R. J. Mathar, Oct 06 2017
LINKS
FORMULA
From Mats Granvik, Sep 16 2017: (Start)
a(n) as the matrix inverse of a mixed convolution: Let c = 2 and let the sequence b be defined by the recurrence: b(1) = 1, b(2) = c, b(3) = c^2; for n >= 4, b(n) = c*b(n-1) + b(n-2), so b(n) = A052542(n-1), and let the lower triangular matrix A be: If n >= k then A(n,k) = b(n - k + 1) else A(n,k) = 0, and let B be the lower triangular matrix A051731. Then the matrix inverse (A.B)^-1 will have a(n) as its first column.
The matrix product T = A.B can be defined as follows: Let c = 2 and the sequence b be defined by the recurrence b(0) = 1, b(1) = 1; for b >= 2, b(n) = c*b(n - 1) + b(n - 2), so b(n) = A001333(n); and let T be the lower triangular matrix defined by the recurrence: T(n, 1) = If n >= 1 then T(n, 1) = b(n) else T(n, 1) = 0; for k >= 2, T(n, k) = If n >= k then (Sum_{i=1..k-1} T(n - i, k - 1) - T(n - i, k)) else 0. (Then the matrix inverse of T will have a(n) as its first column.)
(End)
MAPLE
b := proc(n)
option remember;
local c;
c := 2;
if n <= 2 then
n;
elif n = 3 then
c^2 ;
else
c*procname(n-1)+procname(n-2) ;
end if;
end proc:
A := proc(n, k)
if n >= k then
b(n-k+1) ;
else
0 ;
end if;
end proc:
B := proc(n, k)
if modp(n, k) = 0 then
1;
else
0;
end if;
end proc:
AB := proc(n, k)
option remember;
add( A(n, j)*B(j, k), j=1..n) ;
end proc:
ABinv := proc(n, k)
option remember;
if k > n then
0;
elif k = n then
1;
else
-add( AB(n, j)*procname(j, k), j=k..n-1) ;
end if;
end proc:
A181434 := proc(n)
ABinv(n, 1) ;
end proc:
for n from 1 do
printf("%d %d\n", n, ABinv(n, 1)) ;
end do: # R. J. Mathar, Oct 06 2017
MATHEMATICA
Clear[t, n, k, nn, b, A, c]; nn = 77; c = 2; b[0] = 1; b[1] = 1; b[n_] := b[n] = c*b[n - 1] + b[n - 2]; t[n_, 1] = If[n >= 1, b[n], 0]; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; MatrixForm[A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]; Inverse[A][[All, 1]] (* Mats Granvik, Sep 15 2017 *)
PROG
(PARI) A181434(n)=if(n==2, -3, moebius(n)) \\ M. F. Hasler, Sep 15 2017. - This program seems to be based on a formula that is so far only conjectural? - Antti Karttunen, Oct 06 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Mats Granvik, Oct 20 2010
STATUS
approved