login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181436
Numbers k such that the prime divisors of k^2 + 1 are of the form q^2 + 1.
4
1, 2, 3, 4, 6, 7, 10, 13, 14, 16, 20, 24, 26, 36, 38, 40, 43, 54, 56, 66, 68, 74, 84, 90, 94, 110, 116, 117, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 183, 184, 204, 206, 210, 224, 230, 236, 240, 250, 256, 260, 264, 270, 280, 284, 293, 300, 306, 314, 326, 327
OFFSET
1,2
LINKS
EXAMPLE
183 is in the sequence because 183^2 + 1 = 2*5*17*197 and 2 = 1^2 + 1, 5 = 2^2+1, 17 = 4^2+1 and 197 = 14^2 + 1.
MAPLE
with(numtheory):nn:=1000:for n from 1 to nn do: x:=n^2+1:y:=factorset(x):ny:=nops(y):id:=0:for
q from 1 to ny do: z:=y[q]-1:zz:=sqrt(z):if zz=floor(zz) then id:=id+1:else fi:od:if id=ny then printf(`%d, `, n):else fi:od:
MATHEMATICA
Select[Range@330, And @@ IntegerQ /@ Sqrt[FactorInteger[#^2 + 1][[All, 1]] - 1] &] (* Ivan Neretin, Aug 31 2016 *)
PROG
(PARI) isok(n) = {fn = factor(n^2+1)[, 1]; for (k=1, #fn, if (!issquare(fn[k]-1), return (0)); ); 1; } \\ Michel Marcus, Sep 01 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 29 2011
STATUS
approved