The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035941 Number of partitions of n into parts not of the form 9k, 9k+2 or 9k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 3 are greater than 1. 1
 1, 1, 2, 3, 4, 6, 7, 10, 13, 17, 21, 28, 35, 44, 55, 69, 84, 105, 127, 156, 189, 229, 275, 333, 397, 475, 565, 673, 795, 943, 1109, 1307, 1533, 1798, 2099, 2455, 2855, 3323, 3855, 4472, 5169, 5978, 6890, 7942, 9132, 10495, 12032, 13796, 15778, 18040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Case k=4, i=2 of Gordon Theorem. REFERENCES G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109. LINKS FORMULA a(n) ~ sin(2*Pi/9) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2015 MAPLE # See A035937 for GordonsTheorem A035941_list := n -> GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], n): A035941_list(40); # Peter Luschny, Jan 22 2012 MATHEMATICA nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(9*k-1)) * (1 - x^(9*k-3)) * (1 - x^(9*k-4)) * (1 - x^(9*k-5)) * (1 - x^(9*k-6)) * (1 - x^(9*k-8)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 12 2015 *) PROG (Sage) # See A035937 for GordonsTheorem def A035941_list(len) :  return GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], len) A035941_list(40) # Peter Luschny, Jan 22 2012 CROSSREFS Sequence in context: A119793 A181436 A199118 * A039854 A237752 A032480 Adjacent sequences:  A035938 A035939 A035940 * A035942 A035943 A035944 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 09:38 EST 2020. Contains 338639 sequences. (Running on oeis4.)