login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035941
Number of partitions of n into parts not of the form 9k, 9k+2 or 9k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 3 are greater than 1.
1
1, 1, 2, 3, 4, 6, 7, 10, 13, 17, 21, 28, 35, 44, 55, 69, 84, 105, 127, 156, 189, 229, 275, 333, 397, 475, 565, 673, 795, 943, 1109, 1307, 1533, 1798, 2099, 2455, 2855, 3323, 3855, 4472, 5169, 5978, 6890, 7942, 9132, 10495, 12032, 13796, 15778, 18040
OFFSET
1,3
COMMENTS
Case k=4, i=2 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
FORMULA
a(n) ~ sin(2*Pi/9) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2015
MAPLE
# See A035937 for GordonsTheorem
A035941_list := n -> GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], n):
A035941_list(40); # Peter Luschny, Jan 22 2012
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(9*k-1)) * (1 - x^(9*k-3)) * (1 - x^(9*k-4)) * (1 - x^(9*k-5)) * (1 - x^(9*k-6)) * (1 - x^(9*k-8)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 12 2015 *)
PROG
(Sage) # See A035937 for GordonsTheorem
def A035941_list(len) : return GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], len)
A035941_list(40) # Peter Luschny, Jan 22 2012
CROSSREFS
Sequence in context: A181436 A378615 A199118 * A039854 A237752 A032480
KEYWORD
nonn,easy
STATUS
approved