Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Oct 06 2017 07:43:26
%S 1,-3,-1,0,-1,1,-1,0,0,1,-1,0,-1,1,1,0,-1,0,-1,0,1,1,-1,0,0,1,0,0,-1,
%T -1,-1,0,1,1,1,0,-1,1,1,0,-1,-1,-1,0,0,1,-1,0,0,0,1,0,-1,0,1,0,1,1,-1,
%U 0,-1,1,0,0,1,-1,-1,0,1,-1,-1,0,-1,1,0,0,1
%N First column in matrix inverse of a mixed convolution of A052542.
%C It appears that except for the second term, the sequence is identical to the Möbius function.
%C Explicit numeric calculation confirms this up to at least n=1085. - _R. J. Mathar_, Oct 06 2017
%H R. J. Mathar, <a href="/A181434/b181434.txt">Table of n, a(n) for n = 1..1085</a>
%F From _Mats Granvik_, Sep 16 2017: (Start)
%F a(n) as the matrix inverse of a mixed convolution: Let c = 2 and let the sequence b be defined by the recurrence: b(1) = 1, b(2) = c, b(3) = c^2; for n >= 4, b(n) = c*b(n-1) + b(n-2), so b(n) = A052542(n-1), and let the lower triangular matrix A be: If n >= k then A(n,k) = b(n - k + 1) else A(n,k) = 0, and let B be the lower triangular matrix A051731. Then the matrix inverse (A.B)^-1 will have a(n) as its first column.
%F The matrix product T = A.B can be defined as follows: Let c = 2 and the sequence b be defined by the recurrence b(0) = 1, b(1) = 1; for b >= 2, b(n) = c*b(n - 1) + b(n - 2), so b(n) = A001333(n); and let T be the lower triangular matrix defined by the recurrence: T(n, 1) = If n >= 1 then T(n, 1) = b(n) else T(n, 1) = 0; for k >= 2, T(n, k) = If n >= k then (Sum_{i=1..k-1} T(n - i, k - 1) - T(n - i, k)) else 0. (Then the matrix inverse of T will have a(n) as its first column.)
%F (End)
%p b := proc(n)
%p option remember;
%p local c;
%p c := 2;
%p if n <= 2 then
%p n;
%p elif n = 3 then
%p c^2 ;
%p else
%p c*procname(n-1)+procname(n-2) ;
%p end if;
%p end proc:
%p A := proc(n,k)
%p if n >= k then
%p b(n-k+1) ;
%p else
%p 0 ;
%p end if;
%p end proc:
%p B := proc(n,k)
%p if modp(n,k) = 0 then
%p 1;
%p else
%p 0;
%p end if;
%p end proc:
%p AB := proc(n,k)
%p option remember;
%p add( A(n,j)*B(j,k),j=1..n) ;
%p end proc:
%p ABinv := proc(n,k)
%p option remember;
%p if k > n then
%p 0;
%p elif k = n then
%p 1;
%p else
%p -add( AB(n,j)*procname(j,k),j=k..n-1) ;
%p end if;
%p end proc:
%p A181434 := proc(n)
%p ABinv(n,1) ;
%p end proc:
%p for n from 1 do
%p printf("%d %d\n",n,ABinv(n,1)) ;
%p end do: # _R. J. Mathar_, Oct 06 2017
%t Clear[t, n, k, nn, b, A, c]; nn = 77; c = 2; b[0] = 1; b[1] = 1; b[n_] := b[n] = c*b[n - 1] + b[n - 2]; t[n_, 1] = If[n >= 1, b[n], 0]; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; MatrixForm[A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]; Inverse[A][[All, 1]] (* _Mats Granvik_, Sep 15 2017 *)
%o (PARI) A181434(n)=if(n==2,-3,moebius(n)) \\ _M. F. Hasler_, Sep 15 2017. - This program seems to be based on a formula that is so far only conjectural? - _Antti Karttunen_, Oct 06 2017
%Y Cf. A000129, A001333, A008683, A013946, A178536, A181435.
%K sign
%O 1,2
%A _Mats Granvik_, Oct 20 2010