login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178533
E.g.f. satisfies: A(x) = Sum_{n>=0} A_{n}(x)^(n+1)/n! where A_{n}(x) denotes the n-th iteration of A(x).
1
1, 2, 15, 220, 5025, 159066, 6515551, 330344736, 20099812977, 1434653999650, 118051188070431, 11045624947772328, 1162186160312303737, 136250833163724567666, 17661781851438961602255, 2514858304152906320391136
OFFSET
1,2
COMMENTS
Not the same as A140054.
FORMULA
E.g.f. satisfies: A_{k}(x) = Sum_{n>=0} A_{n+k-1}(x)^(n+1)/n! where A_{n}(x) denotes the n-th iteration of A(x): A_{n}(x) = A_{n-1}(A(x)) with A_0(x)=x.
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 15*x^3/3! + 220*x^4/4! + 5025*x^5/5! +...
The e.g.f. equals the series:
A(x) = x + A(x)^2 + A(A(x))^3/2! + A(A(A(x)))^4/3! + A(A(A(A(x))))^5/4! +...+ A_{n}(x)^(n+1)/n! +...
Related expansions:
A(A(x)) = x + 4*x^2/2! + 42*x^3/3! + 764*x^4/4! + 20400*x^5/5! +...
A(A(A(x))) = x + 6*x^2/2! + 81*x^3/3! + 1776*x^4/4! + 55125*x^5/5! +...
A(A(A(A(x)))) = x + 8*x^2/2! + 132*x^3/3! + 3400*x^4/4! + 121080*x^5/5! +...
The series reversion of the e.g.f. is given by:
A_{-1}(x) = x - x^2 - A(A(x))^3/2! - A(A(A(x)))^4/3! - A(A(A(A(x))))^5/4! -...- A_{n-1}(x)^(n+1)/n! -...
A_{-1}(x) = x - 2*x^2/2! - 3*x^3/3! - 40*x^4/4! - 795*x^5/5! - 22356*x^6/6! -...
PROG
(PARI) {ITERATE(F, n, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=sum(m=0, n, ITERATE(A, m, n)^(m+1)/m!)); n!*polcoeff(A, n)}
CROSSREFS
Cf. A140054.
Sequence in context: A132493 A135860 A378041 * A087962 A140054 A099085
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 24 2010
STATUS
approved