OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-2*x/(1-x)^3)/2 )/(1-x).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n+2*k,n-k)/k!.
a(n) ~ 3^(n + 5/3) * c^((n + 2)/3) * n^(n-1) / (exp(n) * (3*c^(1/3) - c^(2/3)*3^(1/3) * exp(1/3) + 2*3^(2/3) * exp(2/3))^n) / (sqrt(2) * (c^(2/3) - 2*3^(1/3) * exp(1/3))^(5/2) * sqrt((3^(2/3)*c^(2/3) - 6*exp(1/3)) / (9*3^(1/3)*c^(2/3) - 8*3^(1/3)*c^(2/3) * exp(1) + 8*3^(2/3)*exp(4/3) - 15*3^(1/6) * exp(1/3)*(c/sqrt(3)) + 2*c^(1/3)*exp(2/3) * (c + 15)))), where c = 9 + sqrt(81 + 24*exp(1)). - Vaclav Kotesovec, Nov 15 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x)^3)/2)/(1-x)))
(PARI) a(n) = n!*sum(k=0, n, (2*k+1)^(k-1)*binomial(n+2*k, n-k)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 15 2024
STATUS
approved