login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378041
E.g.f. satisfies A(x) = exp( x * A(x)^2 / (1-x) ) / (1-x).
2
1, 2, 15, 220, 4873, 145446, 5479639, 249736936, 13366083889, 821950542730, 57117681241471, 4426656694204020, 378577567656396409, 35416929943920575662, 3598006167290727776263, 394460149364865110384896, 46420283015545052734709473, 5836509710708683465245181458
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-2*x/(1-x)^3)/2 )/(1-x).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n+2*k,n-k)/k!.
a(n) ~ 3^(n + 5/3) * c^((n + 2)/3) * n^(n-1) / (exp(n) * (3*c^(1/3) - c^(2/3)*3^(1/3) * exp(1/3) + 2*3^(2/3) * exp(2/3))^n) / (sqrt(2) * (c^(2/3) - 2*3^(1/3) * exp(1/3))^(5/2) * sqrt((3^(2/3)*c^(2/3) - 6*exp(1/3)) / (9*3^(1/3)*c^(2/3) - 8*3^(1/3)*c^(2/3) * exp(1) + 8*3^(2/3)*exp(4/3) - 15*3^(1/6) * exp(1/3)*(c/sqrt(3)) + 2*c^(1/3)*exp(2/3) * (c + 15)))), where c = 9 + sqrt(81 + 24*exp(1)). - Vaclav Kotesovec, Nov 15 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x)^3)/2)/(1-x)))
(PARI) a(n) = n!*sum(k=0, n, (2*k+1)^(k-1)*binomial(n+2*k, n-k)/k!);
CROSSREFS
Sequence in context: A361617 A132493 A135860 * A178533 A087962 A140054
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 15 2024
STATUS
approved