login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378042
E.g.f. satisfies A(x) = exp( x * A(x)^3 / (1-x) ) / (1-x).
1
1, 2, 19, 385, 12041, 512101, 27616705, 1806241151, 138948411649, 12294333869545, 1230146587626041, 137347201671983227, 16928938651265737585, 2283232081600363345037, 334480117852142180147377, 52888942867094899879009111, 8978241760087200983202588545, 1628601738501672908949881316433
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-3*x/(1-x)^4)/3 )/(1-x).
a(n) = n! * Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n+3*k,n-k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x/(1-x)^4)/3)/(1-x)))
(PARI) a(n) = n!*sum(k=0, n, (3*k+1)^(k-1)*binomial(n+3*k, n-k)/k!);
CROSSREFS
Sequence in context: A110818 A325288 A155927 * A353290 A332967 A120420
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 15 2024
STATUS
approved