login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155927
G.f. satisfies: A(x) = B(x/A(x)) where A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n] and B(x) = A(x*B(x)) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n].
2
1, 1, -2, 19, -379, 12726, -641465, 45181627, -4232016719, 508271819428, -76108505872794, 13896010073569130, -3038043685025188631, 783439451518414509612, -235289860249420249309140
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = F(x/A(x)^2) and F(x) = A(x*F(x)^2) where F(x) = Sum_{n>=0} A155926(n)*x^n/[n!*(n+1)!/2^n].
G.f. satisfies: A(x) = 1/G(x/A(x)) and G(x) = 1/A(x/G(x)) where G(x) = Sum_{n>=0} A103365(n)*x^n/[n!*(n+1)!/2^n].
EXAMPLE
G.f.: A(x) = 1 + x - 2*x^2/3 + 19*x^3/18 - 379*x^4/180 + 12726*x^5/2700 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
G.f. satisfies: A(x) = B(x/A(x)) and B(x) = A(x*B(x)) where:
B(x) = 1 + x + 1/3*x^2 + 1/18*x^3 + 1/180*x^4 +...+ x^n/[n!*(n+1)!/2^n] +...
G.f. satisfies: A(x) = F(x/A(x)^2) and F(x) = A(x*F(x)^2) where:
F(x) = 1 + x + 4*x^2/3 + 37*x^3/18 + 621*x^4/180 + 16526*x^5/2700 +...+ A155926(n)*x^(n+1)/[n!*(n+1)!/2^n] +...
G.f. satisfies: A(x) = 1/G(x/A(x)) and G(x) = 1/A(x/G(x)) where:
G(x) = 1 - x + 2*x^2/3 - 7*x^3/18 + 39*x^4/180 - 321*x^5/2700 +...+ A103365(n)*x^(n+1)/[n!*(n+1)!/2^n] +...
PROG
(PARI) {a(n)=local(B=sum(k=0, n, x^k/(k!*(k+1)!/2^k))+x*O(x^n)); polcoeff(x/serreverse(x*B), n)*n!*(n+1)!/2^n}
CROSSREFS
Sequence in context: A377891 A110818 A325288 * A378042 A353290 A332967
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 31 2009
STATUS
approved