login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378045
E.g.f. satisfies A(x) = (1+x) * exp(x * A(x)^2 / (1+x)).
2
1, 2, 9, 100, 1693, 39046, 1140589, 40379872, 1680490361, 80409242314, 4349556199441, 262478904794140, 17482853419143061, 1274026039224276430, 100830973069183104245, 8612770277501109271576, 789749958006001265241073, 77375794118912255978104978, 8066966112797470401673208089
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: (1+x) * exp( -LambertW(-2*x*(1+x))/2 ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(k+1,n-k)/k!.
a(n) ~ sqrt(1 + 2*exp(-1) - sqrt(1 + 2*exp(-1))) * (1 + sqrt(1 + 2*exp(-1))) * 2^(n-2) * n^(n-1) / ((sqrt(1 + 2*exp(-1)) - 1)^n * exp(n-1)). - Vaclav Kotesovec, Nov 15 2024
PROG
(PARI) a(n) = n!*sum(k=0, n, (2*k+1)^(k-1)*binomial(k+1, n-k)/k!);
CROSSREFS
Cf. A362773.
Sequence in context: A368725 A277180 A013520 * A369673 A041239 A098610
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 15 2024
STATUS
approved