OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-2*x * (1+x))/2 ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(k,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: sqrt(LambertW(-2*x * (1+x))/(-2*x * (1+x))).
a(n) ~ sqrt(-sqrt(1 + 2*exp(-1)) + 1 + 2*exp(-1)) * 2^(n-1) * n^(n-1) / ((-1 + sqrt(1 + 2*exp(-1)))^n * exp(n-1)). (End)
MATHEMATICA
nmax = 20; CoefficientList[Series[Sqrt[LambertW[-2*x * (1+x)]/(-2*x * (1+x))], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 10 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*(1+x))/2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2023
STATUS
approved