login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362776
E.g.f. satisfies A(x) = exp( x/(1-x)^2 * A(x)^2 ).
2
1, 1, 9, 127, 2601, 70981, 2433673, 100697787, 4886085137, 272168650441, 17121437245161, 1200717094233559, 92892754255837561, 7859587210132504653, 721996671783802854377, 71564871858940414914451, 7613407794191946986893857, 865285095267929315207801233
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-2*x/(1-x)^2)/2 ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n+k-1,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: (1-x) * sqrt(-LambertW(-2*x/(1-x)^2) / (2*x)).
a(n) ~ sqrt(-sqrt(1 + 2*exp(-1)) + 1 + 2*exp(-1)) * n^(n-1) / (sqrt(2) * (-1 + sqrt(1 + 2*exp(-1)))^(3/2) * (-sqrt(1 + 2*exp(-1)) + 1 + exp(-1))^(n - 1/2) * exp(2*n - 1/2)). (End)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x)^2)/2)))
CROSSREFS
Cf. A361065.
Sequence in context: A092651 A366036 A258294 * A365033 A073014 A046754
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2023
STATUS
approved