OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-2*x/(1-x)^2)/2 ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n+k-1,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: (1-x) * sqrt(-LambertW(-2*x/(1-x)^2) / (2*x)).
a(n) ~ sqrt(-sqrt(1 + 2*exp(-1)) + 1 + 2*exp(-1)) * n^(n-1) / (sqrt(2) * (-1 + sqrt(1 + 2*exp(-1)))^(3/2) * (-sqrt(1 + 2*exp(-1)) + 1 + exp(-1))^(n - 1/2) * exp(2*n - 1/2)). (End)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x)^2)/2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2023
STATUS
approved