login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362774
E.g.f. satisfies A(x) = exp( x * (1+x)^2 * A(x)^2 ).
1
1, 1, 9, 115, 2265, 59701, 1981513, 79441167, 3736418801, 201790517833, 12309193580841, 837132560820139, 62809405894333321, 5154060532188515325, 459202970647825870313, 44146740571635016905991, 4555272678073789024849377, 502153774773932684443210513
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-2*x * (1+x)^2)/2 ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(2*k,n-k)/k!.
MAPLE
A362774 := proc(n)
n!*add((2*k+1)^(k-1) * binomial(2*k, n-k)/k!, k=0..n) ;
end proc:
seq(A362774(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*(1+x)^2)/2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2023
STATUS
approved