login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135860
a(n) = binomial(n*(n+1), n).
10
1, 2, 15, 220, 4845, 142506, 5245786, 231917400, 11969016345, 706252528630, 46897636623981, 3461014728350400, 281014969393251275, 24894763097057357700, 2389461906843449885700, 247012484980695576597296, 27361230617617949782033713, 3233032526324680287912449550
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n^2,k). - Paul D. Hanna, Nov 18 2015
a(n) is divisible by (n+1): a(n)/(n+1) = A135861(n).
a(n) is divisible by (n^2+1): a(n)/(n^2+1) = A135862(n).
a(n) = binomial(2*A000217(n),n). - Arkadiusz Wesolowski, Jul 18 2012
a(n) = [x^n] 1/(1 - x)^(n^2+1). - Ilya Gutkovskiy, Oct 03 2017
a(n) ~ exp(n + 1/2) * n^(n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Feb 08 2019
a(p) == p + 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == (4*p + 1)*(2*p + 1) ( mod p^4 ) for all prime p. Apply Mestrovic, equation 37. - Peter Bala, Feb 27 2020
a(n) = ((n^2 + n)!)/((n^2)! * n!). - Peter Luschny, Feb 27 2020
MATHEMATICA
Table[Binomial[n^2 + n, n], {n, 0, 16}] (* Arkadiusz Wesolowski, Jul 18 2012 *)
PROG
(PARI) a(n)=binomial(n*(n+1), n)
for(n=0, 15, print1(a(n), ", "))
(PARI) a(n)=sum(k=0, n, binomial(n, k)*binomial(n^2, k))
for(n=0, 15, print1(a(n), ", "))
(Magma) [Binomial(n*(n+1), n): n in [0..30]]; // G. C. Greubel, Feb 20 2022
(Sage) [binomial(n*(n+1), n) for n in (0..30)] # G. C. Greubel, Feb 20 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Dec 02 2007
STATUS
approved