OFFSET
0,3
COMMENTS
From Peter Bala, Dec 02 2015: (Start)
Let x = p/q be a positive rational in reduced form with p,q > 0. Define Cat(x) = 1/(2*p + q)*binomial(2*p + q, p). Then Cat(n) = Catalan(n). This sequence is Cat(n/(n^2 - n + 1)). Cf. A143669.
See Armstrong et al. for combinatorial interpretations of these generalized Catalan number sequences. (End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..339
D. Armstrong, B. Rhoades, and N. Williams, Rational associahedra and noncrossing partitions arxiv:1305.7286v1 [math.CO], 2013.
R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
FORMULA
a(n) = A135860(n)/(n^2+1).
a(n) = 1/(n^2 + n + 1)*binomial(n^2 + n + 1, n). - Peter Bala, Dec 02 2015
Ccongruences: a(p) == (1 + p - p^2 - p^3) ( mod p^4 ) for prime p >= 5 and a(2*p) == (1 + 6*p + 4*p^2) ( mod p^3 ) for all prime p (apply Mestrovic, equation 37). - Peter Bala, Feb 23 2020
MATHEMATICA
Table[Binomial[n (n + 1), n]/(n^2 + 1), {n, 0, 30}] (* Vincenzo Librandi, Dec 09 2015 *)
PROG
(PARI) a(n)=binomial(n*(n+1), n)/(n^2+1)
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = local(A=1+x); for(i=1, n, A = exp( sum(k=1, n, A^(n*k)*x^k/k +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(Magma) [Binomial(n*(n+1), n)/(n^2+1): n in [0..20]]; // Vincenzo Librandi, Dec 09 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Dec 02 2007
STATUS
approved