The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135861 a(n) = binomial(n*(n+1),n)/(n+1). 12
 1, 1, 5, 55, 969, 23751, 749398, 28989675, 1329890705, 70625252863, 4263421511271, 288417894029200, 21616536107173175, 1778197364075525550, 159297460456229992380, 15438280311293473537331, 1609484153977526457766689, 179612918129148904884024975 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..338 R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011. FORMULA a(n) = A135860(n)/(n+1). a(n) = [x^(n^2)] 1/(1 - x)^n. - Ilya Gutkovskiy, Oct 10 2017 a(p) == 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == 4*p + 1 ( mod p^4 ) for prime p >= 5 (apply Mestrovic, equation 37). - Peter Bala, Feb 23 2020 a(n) ~ exp(n + 1/2) * n^(n - 3/2) / sqrt(2*Pi). - Vaclav Kotesovec, Oct 17 2020 MAPLE A135861:=n->binomial(n*(n+1), n)/(n+1); seq(A135861(n), n=0..15); # Wesley Ivan Hurt, May 08 2014 MATHEMATICA Table[Binomial[n*(n + 1), n]/(n + 1), {n, 0, 15}] PROG (PARI) a(n)=binomial(n*(n+1), n)/(n+1) CROSSREFS Cf. A014068, A107863, A135860, A135862, A295763. Sequence in context: A195513 A172493 A155807 * A141361 A203013 A266481 Adjacent sequences: A135858 A135859 A135860 * A135862 A135863 A135864 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 15:40 EDT 2024. Contains 373389 sequences. (Running on oeis4.)