The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A360596 Expansion of e.g.f. 1/( (1 - x) * (1 + LambertW(-2*x)) ). 0
1, 3, 22, 282, 5224, 126120, 3742704, 131612432, 5347866752, 246490091136, 12704900911360, 724072211436288, 45209213973292032, 3068872654856532992, 225023336997933996032, 17724257054969009940480, 1492513932494133333753856, 133800772458366199028023296 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..n} (2*k)^k / k!.
a(0)=1; a(n) = n*a(n-1) + (2*n)^n.
a(n) ~ 2^(n+1) * n^n / (2 - exp(-1)). - Vaclav Kotesovec, Feb 13 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/((1-x)*(1+lambertw(-2*x)))))
(PARI) a(n) = n!*sum(k=0, n, (2*k)^k/k!);
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+(2*i)^i); v;
CROSSREFS
Sequence in context: A352448 A141360 A162659 * A206801 A135862 A122778
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 13 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 14:41 EDT 2024. Contains 372861 sequences. (Running on oeis4.)