|
|
A062971
|
|
a(n) = (2*n)^n.
|
|
15
|
|
|
1, 2, 16, 216, 4096, 100000, 2985984, 105413504, 4294967296, 198359290368, 10240000000000, 584318301411328, 36520347436056576, 2481152873203736576, 182059119829942534144, 14348907000000000000000, 1208925819614629174706176, 108428035605965932354207744
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Shift n^n left n bits.
Also the number of input-closed output-Boolean Moore machines on n states. - David Spivak, Feb 14 2020
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 0..100
|
|
FORMULA
|
E.g.f.: -(2*x*e^(-W(-2*x)))/(W(-2*x)*(W(-2*x)+1)), W(x) is Lambert's function. - Vladimir Kruchinin, May 09 2013
E.g.f.: 1/(1 + LambertW(-2*x)). - Vaclav Kotesovec, Dec 21 2014
|
|
EXAMPLE
|
n=3: 3^3 shifted three bits to the left is 216 because 3^3 in binary is: [1, 1, 0, 1, 1] and 216 in binary is: [1, 1, 0, 1, 1, 0, 0, 0].
|
|
MAPLE
|
a:= n-> (2*n)^n: seq(a(n), n=0..15); # Zerinvary Lajos, Jan 01 2009
|
|
MATHEMATICA
|
Join[{1}, Table[(2*n)^n, {n, 1, 50}]] (* G. C. Greubel, Nov 10 2017 *)
|
|
PROG
|
(PARI) for(n=0, 20, print1(shift(n^n, n), ", "))
|
|
CROSSREFS
|
Column k=1 of A246070.
Sequence in context: A349313 A114531 A012056 * A267782 A012164 A264543
Adjacent sequences: A062968 A062969 A062970 * A062972 A062973 A062974
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jason Earls, Jul 23 2001
|
|
EXTENSIONS
|
New description from Vladeta Jovovic, Mar 08 2003
|
|
STATUS
|
approved
|
|
|
|