login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246070
Number A(n,k) of endofunctions f on [2n] satisfying f^k(i) = i for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
7
1, 1, 4, 1, 2, 256, 1, 3, 16, 46656, 1, 2, 50, 216, 16777216, 1, 3, 36, 1626, 4096, 10000000000, 1, 2, 56, 1440, 83736, 100000, 8916100448256, 1, 3, 16, 2688, 84624, 6026120, 2985984, 11112006825558016, 1, 2, 70, 720, 215760, 7675200, 571350096, 105413504, 18446744073709551616
OFFSET
0,3
LINKS
EXAMPLE
Square array A(n,k) begins:
0 : 1, 1, 1, 1, 1, 1, ...
1 : 4, 2, 3, 2, 3, 2, ...
2 : 256, 16, 50, 36, 56, 16, ...
3 : 46656, 216, 1626, 1440, 2688, 720, ...
4 : 16777216, 4096, 83736, 84624, 215760, 94816, ...
5 : 10000000000, 100000, 6026120, 7675200, 24899120, 11218000, ...
MAPLE
with(numtheory): with(combinat): M:=multinomial:
b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]),
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
A:= (n, k)-> `if`(k=0, (2*n)^(2*n), b(2*n, n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial;
b[n_, k0_, p_] := Module[{l, g}, l = Divisors[p];
g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]];
If[i == 1, If[m == 0, 1, n^m], Sum[M[k, Join[{k - (d - t)*j},
Table[d - t, {j}]]]/j!*If[j == 0, 1, (d - 1)!^j]*M[m, Join[{m - t*j},
Array[t&, j]]]*g[k - (d - t)*j, m - t*j, Sequence @@
If[d - t == 1, {i - 1, 0}, {i, t + 1}]], {j, 0, Min[k/(d - t),
If[t == 0, {}, m/t]]}]]];
g[k0, n - k0, Length[l], 0]];
A[n_, k_] := If[k == 0, If[n == 0, 1, (2n)^(2n)], b[2*n, n, k]];
Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz, updated Jan 01 2021 *)
CROSSREFS
Columns k=0-3 give: A085534, A062971, A245141, A245959.
Main diagonal gives A246071.
Cf. A246072 (the same for permutations).
Sequence in context: A280284 A004161 A303141 * A202778 A025016 A355499
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 12 2014
STATUS
approved