login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246073
Number of permutations p on [2n] satisfying p^n(i) = i for all i in [n].
2
1, 1, 10, 108, 6672, 109200, 45007920, 983324160, 665546434560, 60174422501760, 32648180513760000, 4656975300322329600, 13859947861644771532800, 1193599114668580293273600, 1257285172911535450293811200, 766119340152013216053484800000
OFFSET
0,3
COMMENTS
Conjecture: Lim inf n->infinity a(n) / (((n-1)!)^2 * 4^(n-1) / sqrt(n)) = 1.128... . - Vaclav Kotesovec, Aug 14 2014
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..233 (first 100 terms from Alois P. Heinz)
Vaclav Kotesovec, Graph - asymptotic
FORMULA
a(n) = A246072(2n,n).
EXAMPLE
a(2) = 10: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,3,2), (2,1,3,4), (2,1,4,3), (3,2,1,4), (3,4,1,2), (4,2,3,1), (4,3,2,1).
a(3) = 108: (1,2,3,4,5,6), (1,2,3,4,6,5), (1,2,3,5,4,6), ... (6,4,2,3,1,5), (6,5,1,2,4,3), (6,5,2,1,3,4).
MAPLE
with(numtheory): with(combinat): M:=multinomial:
b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]),
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, m!, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
a:= n-> `if`(n=0, 1, b(2*n, n, n)):
seq(a(n), n=0..20);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial;
b[n_, k_, p_] := b[n, k, p] = Module[{l, g}, l = Sort[Divisors[p]]; g[k0_, m_, i_, t_] := g[k0, m, i, t] = Module[{d}, d = l[[i]]; If[i == 1, m!, Sum[M[k0, Join[{k0 - (d - t) j}, Table[d - t, {j}]]]/j! (d - 1)!^j M[m, Join[{m - t j}, Table[t, {j}]]] If[d - t == 1, g[k0 - (d - t) j, m - t j, i - 1, 0], g[k0 - (d - t) j, m - t j, i, t + 1]], {j, 0, Min[k0/(d - t), If[t == 0, Infinity, m/t]]}]]]; g[k, n - k, Length[l], 0]];
a[n_] := If[n == 0, 1, b[2n, n, n]];
a /@ Range[0, 20] (* Jean-François Alcover, Nov 13 2020, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A246072.
Sequence in context: A059524 A190957 A163206 * A261920 A024527 A291894
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 12 2014
STATUS
approved