The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025016 Final digits of !n = Sum i!, i=0..n, (A003422) for very large n, read from right. 5
 4, 1, 3, 0, 4, 9, 0, 2, 4, 0, 2, 9, 8, 2, 5, 6, 3, 3, 2, 4, 4, 6, 5, 5, 2, 5, 0, 9, 3, 0, 5, 0, 1, 3, 9, 5, 3, 2, 3, 4, 0, 8, 4, 9, 9, 7, 0, 1, 1, 2, 6, 8, 3, 7, 4, 8, 6, 8, 7, 4, 9, 7, 4, 7, 4, 2, 2, 9, 0, 0, 4, 3, 3, 0, 5, 6, 5, 8, 6, 5, 0, 0, 2, 6, 6, 5, 1, 5, 9, 7, 8, 8, 1, 6, 2, 0, 2, 8, 1, 2, 1, 3, 7, 6, 1, 1, 5, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Reversed digits of 10-adic sum of all factorials. More generally, the 10-adic sum: B(n) = Sum_{k>=0} k^n*k! is given by: B(n) = A014182(n)*B(0) + A014619(n) for n>=0, where B(0) is the 10-adic sum of factorials (this constant). - Paul D. Hanna, Aug 12 2006 LINKS EXAMPLE !20=256132749111820314 !30=16158688114800553828940314 ... MATHEMATICA a[n_] := Module[{x, f=1}, While[Mod[f!, 10^(n+1)]>0, f += 1]; x = Sum[ Mod[k!, 10^(n+1)], {k, 0, f}]; Quotient[10*Mod[x, 10^(n+1)], 10^(n+1)]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 18 2015, after Paul D. Hanna *) PROG (PARI) {a(n)=local(x, f=1); while(f!%10^(n+1)>0, f+=1); x=sum(k=0, f, k!%10^(n+1)); (10*(x%10^(n+1)))\10^(n+1)} - Paul D. Hanna, Aug 12 2006 CROSSREFS Cf. A014182, A014619. Sequence in context: A303141 A246070 A202778 * A094244 A075447 A217684 Adjacent sequences:  A025013 A025014 A025015 * A025017 A025018 A025019 KEYWORD nonn,base,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 10:39 EDT 2021. Contains 343732 sequences. (Running on oeis4.)