login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025016 Final digits of !n = Sum i!, i=0..n, (A003422) for very large n, read from right. 5
4, 1, 3, 0, 4, 9, 0, 2, 4, 0, 2, 9, 8, 2, 5, 6, 3, 3, 2, 4, 4, 6, 5, 5, 2, 5, 0, 9, 3, 0, 5, 0, 1, 3, 9, 5, 3, 2, 3, 4, 0, 8, 4, 9, 9, 7, 0, 1, 1, 2, 6, 8, 3, 7, 4, 8, 6, 8, 7, 4, 9, 7, 4, 7, 4, 2, 2, 9, 0, 0, 4, 3, 3, 0, 5, 6, 5, 8, 6, 5, 0, 0, 2, 6, 6, 5, 1, 5, 9, 7, 8, 8, 1, 6, 2, 0, 2, 8, 1, 2, 1, 3, 7, 6, 1, 1, 5, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Reversed digits of 10-adic sum of all factorials.

More generally, the 10-adic sum: B(n) = Sum_{k>=0} k^n*k! is given by: B(n) = A014182(n)*B(0) + A014619(n) for n>=0, where B(0) is the 10-adic sum of factorials (this constant). - Paul D. Hanna, Aug 12 2006

LINKS

Table of n, a(n) for n=0..107.

Index entries for sequences related to final digits of numbers

EXAMPLE

!20=256132749111820314 !30=16158688114800553828940314 ...

MATHEMATICA

a[n_] := Module[{x, f=1}, While[Mod[f!, 10^(n+1)]>0, f += 1]; x = Sum[ Mod[k!, 10^(n+1)], {k, 0, f}]; Quotient[10*Mod[x, 10^(n+1)], 10^(n+1)]]; Table[a[n], {n, 0, 100}] (* Jean-Fran├žois Alcover, Nov 18 2015, after Paul D. Hanna *)

PROG

(PARI) {a(n)=local(x, f=1); while(f!%10^(n+1)>0, f+=1); x=sum(k=0, f, k!%10^(n+1)); (10*(x%10^(n+1)))\10^(n+1)} - Paul D. Hanna, Aug 12 2006

CROSSREFS

Cf. A014182, A014619.

Sequence in context: A303141 A246070 A202778 * A094244 A075447 A217684

Adjacent sequences:  A025013 A025014 A025015 * A025017 A025018 A025019

KEYWORD

nonn,base,nice

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 19:12 EST 2018. Contains 317214 sequences. (Running on oeis4.)