login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025015 Central decanomial coefficients: largest coefficient of (1 + x + ... + x^9)^n. 9
1, 1, 10, 75, 670, 6000, 55252, 512365, 4816030, 45433800, 432457640, 4123838279, 39581170420, 380242296850, 3671331273480, 35460394945125, 343900019857310, 3335361909606710, 32458256583753952, 315825118347405835 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of integers in [0, 10^n-1] whose sums of digits are equal to the most common value, which is 9*n/2 for even n and (9*n +/- 1)/2 for odd n > 1. E.g., the most common value of sums of digits of numbers from 0 to 9999 is 9*4/2 = 18, so there are a(4)=670 numbers in this range whose sums of digits are 18. - Warut Roonguthai, Jun 08 2006

Generally, largest coefficient of (1 + x + ... + x^k)^n is asymptotic to (k+1)^n * sqrt(6/(k*(k+2)*Pi*n)). - Vaclav Kotesovec, Aug 09 2013

a(n) is the largest coefficients of the n-th row of A213651. - Miquel Cerda, Jul 19 2017

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

Vaclav Kotesovec, Recurrence

FORMULA

a(n) = Sum_{k=0..floor(9*n/20)}(-1)^(k)*binomial(n, k)*binomial(n+floor(9*n/2)-10*k-1, n-1). - Warut Roonguthai, Jun 08 2006

a(n) ~ 10^n * sqrt(2/(33*Pi*n)). - Vaclav Kotesovec, Aug 09 2013

MATHEMATICA

Flatten[{1, Table[Coefficient[Expand[Sum[x^j, {j, 0, 9}]^n], x^Floor[9*n/2]], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)

CROSSREFS

Cf. A001405, A002426, A005190, A005191, A018901, A025012, A025013, A025014.

Sequence in context: A081017 A238987 A271476 * A228416 A049392 A136869

Adjacent sequences:  A025012 A025013 A025014 * A025016 A025017 A025018

KEYWORD

easy,nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 6 09:45 EDT 2021. Contains 343580 sequences. (Running on oeis4.)