

A025019


Smallest prime in Goldbach partition of A025018(n).


14



2, 3, 5, 7, 19, 23, 31, 47, 73, 103, 139, 173, 211, 233, 293, 313, 331, 359, 383, 389, 523, 601, 727, 751, 829, 929, 997, 1039, 1093, 1163, 1321, 1427, 1583, 1789, 1861, 1877, 1879, 2029, 2089, 2803, 3061, 3163, 3457, 3463, 3529, 3613, 3769, 3917, 4003, 4027, 4057
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For n > 2, a(n) ~ (log(A025018(n)))^e/e, while an upper bound could be written as UB(a(n)) = floor(log(A025018(n)))^e/2 (therefore, for any even v such that 12 <= v <= A025018(67) UB is true). It looks that both approximation and UB are true for any n > 2. Assuming the second equation to be true, UB(10^80) = 718967, UB(10^500) = 104745517, etc.  Sergey Pavlov, Jan 17 2021


LINKS



EXAMPLE

1427 and 1583 are two consecutive terms because A020481(167535419) = 1427 and A020481(209955962) = 1583 and for 167535419 < n < 209955962 A020481(n) <= 1427.


MATHEMATICA

p = 1; q = {}; Do[ k = 2; While[ !PrimeQ[k]  !PrimeQ[2n  k], k++ ]; If[k > p, p = k; q = Append[q, p]], {n, 2, 10^8}]; q


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



