The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025019 Smallest prime in Goldbach partition of A025018(n). 14
 2, 3, 5, 7, 19, 23, 31, 47, 73, 103, 139, 173, 211, 233, 293, 313, 331, 359, 383, 389, 523, 601, 727, 751, 829, 929, 997, 1039, 1093, 1163, 1321, 1427, 1583, 1789, 1861, 1877, 1879, 2029, 2089, 2803, 3061, 3163, 3457, 3463, 3529, 3613, 3769, 3917, 4003, 4027, 4057 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Increasing subsequence of A020481. For n > 2, a(n) ~ (log(A025018(n)))^e/e, while an upper bound could be written as UB(a(n)) = floor(log(A025018(n)))^e/2 (therefore, for any even v such that 12 <= v <= A025018(67) UB is true). It looks that both approximation and UB are true for any n > 2. Assuming the second equation to be true, UB(10^80) = 718967, UB(10^500) = 104745517, etc. - Sergey Pavlov, Jan 17 2021 LINKS N. J. A. Sloane, Table of n, a(n) for n=1..67 (from the web page of Tomás Oliveira e Silva) Mark A. Herkommer, Goldbach Conjecture Research Tomás Oliveira e Silva, Goldbach conjecture verification Jörg Richstein, Verifying the Goldbach conjecture up to 4 * 10^14, Math. Comp., 70 (2001), 1745-1749. Index entries for sequences related to Goldbach conjecture EXAMPLE 1427 and 1583 are two consecutive terms because A020481(167535419) = 1427 and A020481(209955962) = 1583 and for 167535419 < n < 209955962 A020481(n) <= 1427. MATHEMATICA p = 1; q = {}; Do[ k = 2; While[ !PrimeQ[k] || !PrimeQ[2n - k], k++ ]; If[k > p, p = k; q = Append[q, p]], {n, 2, 10^8}]; q CROSSREFS Cf. A025018, A020481, A097224, A097226. Sequence in context: A244529 A332583 A345335 * A140327 A346167 A163074 Adjacent sequences: A025016 A025017 A025018 * A025020 A025021 A025022 KEYWORD nonn AUTHOR David W. Wilson, Dec 11 1999 EXTENSIONS Edited and extended by Robert G. Wilson v, Dec 13 2002 More terms and b-file added by N. J. A. Sloane, Nov 28 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 14:01 EDT 2024. Contains 371635 sequences. (Running on oeis4.)