login
A244529
Prime numbers whose decimal expansion contains no repeated digits or zeros, whose digits cannot be rearranged to form another prime number.
1
2, 3, 5, 7, 19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 257, 263, 269, 431, 487, 523, 541, 827, 829, 853, 859, 2861, 5623, 5849
OFFSET
1,1
COMMENTS
There are only thirty prime numbers which meet the criteria.
The largest prime in this sequence happens, as noted by Farideh Firoozbakht, to have the property pi(5849) = (pi(5)*pi(8)*pi(4)*pi(9)) * (pi(pi(5))*pi(pi(8))*pi(pi(4))*pi(pi(9)), where pi = A000720. Note that 5849 is the earliest multi-digit prime with this property. - Jonathan Vos Post, Jun 30 2014
LINKS
EXAMPLE
541 (prime) -> 145, 154, 415, 451, 514 (all nonprime).
MAPLE
with(combinat):
T:= n-> sort(map(h-> h[], select(z-> nops(z)=1,
map(x-> map(y-> select(isprime, parse(cat(y[]))),
permute(x)), choose([$1..9], n)))))[]:
seq(T(n), n=1..4); # Alois P. Heinz, Jun 29 2014
MATHEMATICA
nrdQ[n_]:=Module[{idn=IntegerDigits[n]}, FreeQ[idn, 0]&&Length[Union[idn]] == Length[idn]&&Count[FromDigits/@Permutations[idn], _?PrimeQ]==1]; Select[ Prime[ Range[800]], nrdQ] (* Harvey P. Dale, Apr 27 2018 *)
CROSSREFS
Cf. A000720.
Sequence in context: A153590 A360041 A360040 * A332583 A345335 A025019
KEYWORD
nonn,base,fini,full
AUTHOR
Andreas Boe, Jun 29 2014
STATUS
approved