login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244532
Number of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 3.
3
1, 0, 0, 3, 7, 8, 21, 55, 121, 265, 611, 1379, 3193, 7436, 17085, 39339, 91846, 214549, 500132, 1169267, 2743302, 6445797, 15167805, 35749961, 84390645, 199523566, 472429633, 1120012481, 2658525869, 6318368820, 15034189965, 35811690663, 85393261630
OFFSET
4,4
LINKS
Vaclav Kotesovec, Recurrence (of order 9)
FORMULA
a(n) ~ sqrt(sqrt(2)/4 - sqrt(154+112*sqrt(2))/56) * ((sqrt(13+16*sqrt(2))-1)/2)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 02 2014
MAPLE
b:= proc(n, t, k) option remember; `if`(n=0,
`if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)*
b(n-j, max(0, t-1), k), j=1..n)))
end:
a:= n-> b(n-1, 3$2) -b(n-1, 4$2):
seq(a(n), n=4..40);
MATHEMATICA
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t > n, 0, Sum[b[j - 1, k, k]*b[n - j, Max[0, t - 1], k], {j, 1, n}]]]; T[n_, k_] := b[n - 1, k, k] - If[n == 1 && k == 0, 0, b[n - 1, k + 1, k + 1]]; a[n_] := b[n - 1, 3, 3] - b[n - 1, 4, 4]; Table[a[n], {n, 4, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
Column k=3 of A244530.
Cf. A244457.
Sequence in context: A125570 A268111 A369920 * A037208 A102007 A152486
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved