OFFSET
5,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 5..1000
Vaclav Kotesovec, Recurrence (of order 11)
FORMULA
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 2.18452974131524781307797151868229485574758... is the root of the equation -229 - 36*d + 2*d^2 - 32*d^3 + 19*d^4 + 4*d^5 = 0, and c = 0.181069926661856899940163775713243367029404419526724... . - Vaclav Kotesovec, Jul 02 2014
MAPLE
b:= proc(n, t, k) option remember; `if`(n=0,
`if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)*
b(n-j, max(0, t-1), k), j=1..n)))
end:
a:= n-> b(n-1, 4$2) -b(n-1, 5$2):
seq(a(n), n=5..45);
MATHEMATICA
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t > n, 0, Sum[b[j - 1, k, k]*b[n - j, Max[0, t - 1], k], {j, 1, n}]]]; T[n_, k_] := b[n - 1, k, k] - If[n == 1 && k == 0, 0, b[n - 1, k + 1, k + 1]]; a[n_] := b[n - 1, 4, 4] - b[n - 1, 5, 5]; Table[a[n], {n, 5, 45}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved