login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A244458
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 4.
3
1, 0, 0, 0, 1, 2, 2, 2, 4, 7, 12, 16, 25, 38, 61, 94, 147, 227, 356, 550, 862, 1345, 2113, 3299, 5168, 8091, 12721, 19981, 31421, 49384, 77761, 122487, 193151, 304623, 480852, 759367, 1200150, 1897594, 3002329, 4752436, 7527155, 11927290, 18909719, 29993579
OFFSET
5,6
LINKS
EXAMPLE
a(9) = 1:
o
/ ( ) \
o o o o
/( )\
o o o o
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0, t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 4$2) -b(n-1$2, 5$2):
seq(a(n), n=5..50);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 4, 4] - b[n - 1, n - 1, 5, 5]; Table[a[n], {n, 5, 50}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
Column k=4 of A244454.
Cf. A244533.
Sequence in context: A253059 A098705 A029866 * A286613 A229061 A339464
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved