login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244458
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 4.
3
1, 0, 0, 0, 1, 2, 2, 2, 4, 7, 12, 16, 25, 38, 61, 94, 147, 227, 356, 550, 862, 1345, 2113, 3299, 5168, 8091, 12721, 19981, 31421, 49384, 77761, 122487, 193151, 304623, 480852, 759367, 1200150, 1897594, 3002329, 4752436, 7527155, 11927290, 18909719, 29993579
OFFSET
5,6
LINKS
EXAMPLE
a(9) = 1:
o
/ ( ) \
o o o o
/( )\
o o o o
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0, t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 4$2) -b(n-1$2, 5$2):
seq(a(n), n=5..50);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 4, 4] - b[n - 1, n - 1, 5, 5]; Table[a[n], {n, 5, 50}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
Column k=4 of A244454.
Cf. A244533.
Sequence in context: A253059 A098705 A029866 * A286613 A229061 A339464
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved