login
A229061
The (n+1)-th term of the n-th differences of the prime sequence.
1
2, 2, 2, 4, 8, -2, -48, -70, 0, 56, 308, 1014, 798, -2072, -5126, -2820, 434, -1340, 62902, 398032, 1247046, 2834160, 5266626, 7862442, 9510040, 13829302, 37650208, 111410394, 260524940, 468110450, 626899146, 481007522, -490911164, -3217336656, -8570944960
OFFSET
0,1
COMMENTS
All terms are even. The only zero seems to be a(8), corresponding to A036269(9).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..98 from Jean-François Alcover)
FORMULA
a(n) = A095195(2*n+1,n).
EXAMPLE
The sequences of differences begin:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
1, 2, 2, 4, 2, 4, 2, 4, 6, 2, ...
1, 0, 2, -2, 2, -2, 2, 2, -4, 4, ...
-1, 2, -4, 4, -4, 4, 0, -6, 8, -6, ...
3, -6, 8, -8, 8, -4, -6, 14, -14, 6, ...
-9, 14, -16, 16, -12, -2, 20, -28, 20, -2, ...
23, -30, 32, -28, 10, 22, -48, 48, -22, -6, ...
-53, 62, -60, 38, 12, -70, 96, -70, 16, 16, ...
115, -122, 98, -26, -82, 166, -166, 86, 0, -28, ...
etc.
Main diagonal begins:
2, 2, 2, 4, 8, -2, -48, -70, 0, 56, ... .
MAPLE
T:= proc(n, k) option remember;
`if`(k=0, ithprime(n), T(n+1, k-1)-T(n, k-1))
end:
a:= n-> T(n+1, n):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 25 2013
MATHEMATICA
max = 100; row[n_] := Differences[Prime /@ Range[max], n]; Table[row[n], {n, 0, max}] // Diagonal
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved