login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286613
a(n) = A046523(A244154(n)).
4
1, 2, 2, 2, 4, 8, 2, 6, 6, 2, 12, 2, 4, 6, 12, 2, 2, 2, 12, 32, 6, 2, 24, 12, 2, 6, 6, 2, 12, 12, 2, 6, 4, 12, 6, 12, 6, 2, 30, 6, 72, 12, 2, 6, 120, 2, 30, 6, 6, 30, 6, 6, 24, 48, 2, 12, 60, 6, 210, 2, 2, 30, 6, 6, 6, 6, 2, 2, 60, 12, 2, 2, 6, 2, 60, 24, 6, 6, 48, 12, 6, 6, 6, 2, 6, 12, 12
OFFSET
0,2
LINKS
FORMULA
a(n) = A046523(A244154(n)).
a(n) = A278224(A005940(1+n)) = A046523(A048673(A005940(1+n))).
a(n) = A285713(A054429(n)).
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ This function from Michel Marcus
A048673(n) = (A003961(n)+1)/2;
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
(Scheme) (define (A286613 n) (A046523 (A244154 n)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 30 2017
STATUS
approved