login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244457
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 3.
3
1, 0, 0, 1, 2, 2, 4, 7, 12, 20, 34, 56, 98, 167, 284, 484, 835, 1433, 2467, 4250, 7345, 12700, 22004, 38154, 66266, 115224, 200623, 349654, 610126, 1065739, 1863547, 3261672, 5714277, 10020092, 17586014, 30890654, 54305289, 95542387, 168221056, 296401979
OFFSET
4,5
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 1.8239199077079..., c = 0.49573400799... . - Vaclav Kotesovec, Jul 11 2014
EXAMPLE
a(7) = 1:
o
/|\
o o o
/|\
o o o
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0, t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 3$2) -b(n-1$2, 4$2):
seq(a(n), n=4..45);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 3, 3] - b[n - 1, n - 1, 4, 4]; Table[a[n], {n, 4, 45}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
Column k=3 of A244454.
Cf. A244532.
Sequence in context: A095325 A179183 A325786 * A325908 A153970 A067953
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved