The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244457 Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 3. 3
 1, 0, 0, 1, 2, 2, 4, 7, 12, 20, 34, 56, 98, 167, 284, 484, 835, 1433, 2467, 4250, 7345, 12700, 22004, 38154, 66266, 115224, 200623, 349654, 610126, 1065739, 1863547, 3261672, 5714277, 10020092, 17586014, 30890654, 54305289, 95542387, 168221056, 296401979 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,5 LINKS Alois P. Heinz, Table of n, a(n) for n = 4..1000 FORMULA a(n) ~ c * d^n / n^(3/2), where d = 1.8239199077079..., c = 0.49573400799... . - Vaclav Kotesovec, Jul 11 2014 EXAMPLE a(7) = 1: o /|\ o o o /|\ o o o MAPLE b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)\$2, k\$2)+j-1, j)* b(n-i*j, i-1, max(0, t-j), k), j=0..n/i))) end: a:= n-> b(n-1\$2, 3\$2) -b(n-1\$2, 4\$2): seq(a(n), n=4..45); MATHEMATICA b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 3, 3] - b[n - 1, n - 1, 4, 4]; Table[a[n], {n, 4, 45}] (* Jean-François Alcover, Feb 06 2015, after Maple *) CROSSREFS Column k=3 of A244454. Cf. A244532. Sequence in context: A095325 A179183 A325786 * A325908 A153970 A067953 Adjacent sequences: A244454 A244455 A244456 * A244458 A244459 A244460 KEYWORD nonn AUTHOR Joerg Arndt and Alois P. Heinz, Jun 29 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 01:17 EDT 2024. Contains 373468 sequences. (Running on oeis4.)