The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067953 Number of ways to sum numbers from 1 to n to the n-th prime. 6
0, 1, 1, 2, 2, 4, 7, 13, 23, 39, 69, 122, 211, 339, 564, 1001, 1764, 2630, 4565, 7192, 10151, 17202, 26152, 43543, 79126, 117496, 156229, 227302, 295011, 422040, 1004905, 1423445, 2210752, 2796140, 5225780, 6546101, 9921635, 14947534 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = b(0, n), where b(m, n) satisfies b(m, n) = 1 + sum{b(i, j): m<i<j<n & i+j=prime(n)}.
a(n) < A000009(A000040(n)).
EXAMPLE
a(6)=4, as there are 4 decompositions for A000040(6)=13:
6+5+2 = 6+4+3 = 6+4+2+1 = 5+4+3+1 = 13.
MATHEMATICA
(* This program is not convenient for a large number of terms *) a[n_] := Count[ IntegerPartitions[ Prime[n], {2, Floor[n/2 + 2]}, Range[n] ], nn_ /; Length[nn] == Length[nn // Union] ]; Table[Print[n, " ", an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Jun 25 2013 *)
PROG
(Haskell)
a067953 n = p [1..n] $ a000040 n where
p _ 0 = 1
p [] _ = 0
p (k:ks) m | m < k = 0 | otherwise = p ks (m - k) + p ks m
-- Reinhard Zumkeller, Nov 22 2011
(PARI) a(n)=my(p=prime(n), x='x); polcoeff(prod(k=1, n, 1+x^k, O(x^(p+1))+1), p) \\ Charles R Greathouse IV, Jun 25 2013
(PARI) first(n)=my(v=vector(n), x='x, P=O(x^(prime(n)+1))+1, i); forprime(p=2, prime(n), P*=1+x^i++; v[i]=polcoeff(P, p)); v \\ Charles R Greathouse IV, Jun 25 2013
CROSSREFS
Sequence in context: A244457 A325908 A153970 * A109070 A169973 A300353
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Mar 06 2002
EXTENSIONS
a(36)-a(38) from Donovan Johnson, Aug 23 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 10:34 EDT 2024. Contains 372760 sequences. (Running on oeis4.)