login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244455
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 1.
3
1, 1, 3, 7, 17, 42, 105, 267, 684, 1775, 4639, 12238, 32491, 86859, 233496, 631082, 1713613, 4673455, 12795426, 35159212, 96927479, 268021520, 743188706, 2066071045, 5757360011, 16079027344, 44997313684, 126166307275, 354384737204, 997083779801, 2809751278062
OFFSET
2,3
LINKS
FORMULA
a(n) = A000081(n) - A001678(n+1).
EXAMPLE
a(5) = 7:
o o o o o o o
| | | / \ / \ | /|\
o o o o o o o o o o o
| | / \ | | | /|\ |
o o o o o o o o o o o
| / \ | |
o o o o o
|
o
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0, t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 1$2) -b(n-1$2, 2$2):
seq(a(n), n=2..35);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 1, 1] - b[n - 1, n - 1, 2, 2]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
Column k=1 of A244454.
Cf. A106640 (the same for ordered rooted trees).
Sequence in context: A086395 A020730 A003440 * A102071 A363142 A191627
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved