login
A102071
Pairwise sums of general ballot numbers (A002026).
4
1, 3, 7, 17, 42, 106, 272, 708, 1865, 4963, 13323, 36037, 98123, 268737, 739833, 2046207, 5682915, 15842505, 44315637, 124348275, 349911204, 987212856, 2791964574, 7913642086, 22477090679, 63964370301, 182353459733, 520735012027, 1489362193002, 4266018891562, 12236183875496, 35142703099692, 101055137177563
OFFSET
1,2
LINKS
Gennady Eremin, Naturalized bracket row and Motzkin triangle, arXiv:2004.09866 [math.CO], 2020. See Table 2.
FORMULA
G.f.: (4*x*(1+x))/(1-x+sqrt(1-2*x-3*x^2))^2.
a(n) = (1/n) * Sum_{j=0..n} ((binomial(j,n-1-j)+4*binomial(j,n-2-j) + 3*binomial(j,n-3-j))*binomial(n,j)). - Vladimir Kruchinin, Mar 08 2016
a(n) ~ 4*3^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 08 2016
a(n) = A001006(n+1) - A001006(n-1). - Gennady Eremin, Sep 23 2021
D-finite with recurrence (n+3)*a(n) + (-3*n-5)*a(n-1) + (-n+3)*a(n-2) + 3*(n-3)*a(n-3) = 0. - R. J. Mathar, Nov 01 2021
From Peter Bala, Feb 02 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*A002057(k).
G.f.: x/(1 + x)*c(x/(1 + x))^4, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
MATHEMATICA
CoefficientList[Series[(4x(1+x))/(1-x+Sqrt[1-2x-3x^2])^2, {x, 0, 40}], x] (* Harvey P. Dale, Feb 26 2013 *)
PROG
(Maxima)
a(n):=1/n*sum((binomial(j, n-1-j)+4*binomial(j, n-2-j)+3*binomial(j, n-3-j))*binomial(n, j), j, 0, n); /* Vladimir Kruchinin, Mar 08 2016 */
(PARI) z='z+O('z^66); Vec(4*z*(1+z)/(1-z+sqrt(1-2*z-3*z^2))^2) \\ Joerg Arndt, Mar 08 2016
CROSSREFS
First differences of A005554. Partial sums of A026269. 3rd column of A348840.
Sequence in context: A020730 A003440 A244455 * A363142 A191627 A178778
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Dec 30 2004
STATUS
approved